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This work investigates some mathematical properties of the Distributed Approximating
Functionals (DAFs). We prove that certain classes of DAFs yield Unity Approximations.
Two distinct classes which serve as examples are the Hermite-DAFs and the Sinc-class DAFs.
Detailed proofs are given. A wavelet generator is constructed using the Continuous Wavelet
Transform with repect to the scale parameter. Taking the Gaussian function as the scaling
function, a numerical experiment is carried out demonstrating the use of the resulting wavelet
for edge detection.
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1. Introduction

This paper is the first of a series of papers on the study of the mathematical prop-
erties of a certain class of functions, named Distributed A pproximating Functionals
(DAFs) which were originally introduced by Hoffman, Kouri and coworkers [1–3]. The
DAFs were first utilized as approximate Dirac delta kernels, in the sense that they were
used to approximate, with respect to various norms, smooth functions, their various
derivatives, and certain other linear transformations [4–6]. Discrete sampling of the
action of the kernel on appropriate smooth functions was used to derive practical ap-
proximations. Some example applications of DAFs were for the numerical solution
of certain ODEs and PDEs [4–6]. The empirical observation of controllable accuracy

∗ Research supported in part under National Science Foundation Grant CHE-0074311 and R.A. Welch
Foundation Grant E-0608.∗∗ Research supported by a New Faculty Research Award of the University of Houston.∗∗∗ The Ames Laboratory is operated for the Department of Energy by Iowa State University under Contract
No. 2-7405-ENG82.

83

0259-9791/01/0700-0083$19.50/0  2001 Plenum Publishing Corporation



84 G. Wei et al. / Distributed Approximating Functionals

achieved in many such applications motivated Chandler and Gibson to analyze the con-
vergence properties of the HDAFs [7]. Chandler and Gibson in [7] established a rigorous
mathematical basis for what Hoffman, Kouri and coworkers were referring to as “delta
sequences”. They introduced the rigorous concept of unity approximations (see defini-
tion 3). In fact, both the HDAFs created by Hoffman, Kouri and coworkers and the “in-
terpolating DAFs” created by Wei, Hoffman, Kouri and coworkers [4,8–10] yield unity
approximations, as we prove in section 3. Moreover, in this section we generalize the
class of Sinc DAFs. The practical significance of unity approximations is that functions
belonging to certain “large” function spaces, and their derivatives, can be systematically
approximated, with respect to the uniform norm, by sequences of functions produced by
filtering the original function (see theorem 2). Essentially, this particular result estab-
lishes mathematically the character of DAFs as “delta sequences”, as mentioned above.

More recently, DAFs were used with remarkable success as multiresolution scal-
ing functions to generate wavelets for image processing applications [4,6,8–10]. The
successful application of these ideas in a variety of domains suggests that there is a deep
relation between DAFs and multiresolution techniques, both in univariate and multivari-
ate settings. In section 2, we show that DAFs can be used for the detection of edges
(singularities of functions) based on the Continuous Wavelet Transform (CWT), rather
than the theory of multiresolution analysis (see theorem 1).

The first DAF developed, called the Hermit Distributed Approximating Functionals
(HDAF), is not interpolative on the input grid points [1]. That is, the HDAF approxi-
mation to a suitable function at any grid point, xj , is not exactly equal to the input data
value. In contrast to the interpolative property, the HDAF approach to functional ap-
proximation has the property that there are no “special points”. Another type of DAF,
which we call Sinc-class DAFs, and two of its specific realizations, the Sinc DAF and
generalized de la Vallée Poussin DAF, are discussed in detail in section 3.

We conclude this introduction with a few remarks to orient the reader. The space
L2(R) is the Hilbert space containing all measurable functions f defined on R with
complex or real values such that

∫ +∞
−∞ ‖f (t)‖2 dt < +∞. This space possesses an inner

product defined by

〈f, g〉 =
∫ +∞
−∞

f (t)g(t) dt. (1)

The CWT on L1(R) is defined in equation (6). Although an additional hypothesis,
called the admissibility condition, must be imposed on the wavelet ψ to ensure the “exact
reconstruction” of a wavelet-analyzed function, we will consider functions φ and ψ in
L1(R) suitable to define accurately the mappings σ and W given in section 2, without
using the admissibility condition. Thus we will avoid giving the definition of a wavelet
here. The hypotheses we impose on φ and ψ in section 2 are sufficient to ensure validity
of theorem 1.

For 1 � p < +∞, we define the Lp(R) to be the linear spaces of measurable
complex valued functions f such that

∫ +∞
−∞ |f (t)|p dt < +∞. We define the norm ‖ · ‖p
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as

‖f ‖p :=
(∫ +∞
−∞

∣∣f (t)∣∣p dt

)1/p

. (2)

Only for p = 2, Lp(R) is a Hilbert space. For all other cases, Lp(R) are Banach spaces
(see [11] for more details). By ‖ · ‖∞ we denote the uniform norm on the space of
bounded functions on R.

Finally, a measurable function F : [a, b] → C is absolutely continuous if there
exists f ∈ L1([a, b]) such that

F(x) =
∫ x

a

f (t) dt, x ∈ [a, b]. (3)

It is known that if F is absolutely continuous then it is continuous and differentiable
almost everywhere (i.e., there exists a measurable subset A of [a, b] such that F ′(t)
exists for every t ∈ [a, b]). In fact, F ′(t) = f (t) almost everywhere in [a, b]. For
absolutely continuous functions, integration by parts is true. The interested reader may
refer to [11] for more details on absolute continuity.

2. Wavelet generation

2.1. Wavelet differentiation pairs

Holschneider [12] has given a very interesting perspective on the Continuous
Wavelet Transform. Assume that φ is in L1(R), bounded and uniformly continuous.
Then for any arbitrary f ∈ L1(R), a > 0, b ∈ R we define

σf (b, a) :=
∫ +∞
−∞

1

a
φ

(
t − b
a

)
f (t) dt. (4)

The integrability of f and φ implies that σf (b, a) is well defined. In addition, the uni-
form continuity and the boundedness of φ imply that σf is a continuous function.

We can interpret the function σf as a continuous wavelet transform with respect
to the window function φ. We will refer to φ as a father wavelet. We will consider the
derivatives ∂σf /∂a in (0,+∞) and try to interpret them in terms of a continuous wavelet
transform with respect to another window function. Thus, the idea is that ∂σf /∂a gives
us the “rate” of the change of information from one scale to another.

In addition to the previous hypotheses, we assume that φ is differentiable and that
tφ′(t) is bounded and absolutely integrable. Then

ψ(t) := φ(t)+ tφ′(t) (5)

is in L1(R). We will refer to ψ as a mother wavelet. Next, we define

Wf (b, a) =
∫ +∞
−∞

1

a
ψ

(
t − b
a

)
f (t) dt, f ∈ L1(R). (6)
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Theorem 1. If φ satisfies the preceeding hypotheses, then we have that

∂σf

∂a
= −1

a
Wf. (7)

Proof. Let a ∈ R+, b ∈ R and {hn}n be an arbitrary sequence such that lim hn = 0.
Without any loss of generality we can assume |a + hn| > a/2 for every n ∈ N. Let
|φ(t)| � M1 and |φ′(t)| � M2, for every t ∈ R. Then we have that

σf (b, a + hn)− σf (b, a)
hn

=
∫ +∞
−∞

1

hn

[
1

a + hnφ
(
t − b
a + hn

)
− 1

a
φ

(
t − b
a

)]
f (t) dt.

(8)
Let t ∈ R; then we can consider (1/a)φ((t − b)/a) as a function of a. Since φ

is differentiable, we can apply the Mean Value Theorem (considering a as a variable).
Thus, for each hn and t we obtain ξn,t ∈ (a, a + hn) such that

1

hn

[
1

a + hnφ
(
t − b
a + hn

)
− 1

a
φ

(
t − b
a

)]

= − 1

(a + ξn,t )2
φ

(
t − b
a + ξn,t

)
− t − b
(a + ξn,t )3

φ′
(

t − b
a + ξn,t

)
.

Considering the right-hand side of the previous equation as a function of t we note the
following. First, the term (a+ ξn,t )−2 is absolutely bounded by 4/a2 for every n because
ξn,t ∈ (a, a + hn) and |a + hn| > a/2 for every n; second, for every n the function

t − b
a + ξn,t φ

′
(

t − b
a + ξn,t

)

is absolutely bounded by M2. Therefore, we have that for every t and n∣∣∣∣ 1

(a + ξn,t )2
φ

(
t − b
a + ξn,t

)
+ t − b
(a + ξn,t )3

φ′
(

t − b
a + ξn,t

)∣∣∣∣ � 4

a2
(M1 +M2).

Since f is in L1(R), we have that for every n the integrand in the right-hand side of
equation (8) is dominated by the function (4/a2)(M1 +M2)f . On the other hand,

lim
n→∞

1

hn

[
1

a + hn φ
(
t − b
a + hn

)
− 1

a
φ

(
t − b
a

)]
f (t) = − 1

a2
ψa(t − b)f (t).

The latter limit follows immediately from the definition of ψ and a trivial calculation
of ∂φa(t)/∂a. Now using Lebesgue’s Dominated Convergence theorem [13, theorem
12.30] we obtain that

∂σf

∂a
(b, a) = −1

a

∫ +∞
−∞

1

a
ψ

(
t − b
a

)
f (t) dt.

This completes the proof of theorem 1. �



G. Wei et al. / Distributed Approximating Functionals 87

Moreover, if ψ shares the same properties with φ, then the second-order derivative
∂2σf /∂a

2 can be obtained as follows:

∂2σf

∂a2
= ∂

∂a

(
− 1

a
Wf

)

= 1

a2
Wf − 1

a

∂Wf

∂a

= 1

a2
(Wf +W1f ),

where

W1f (b, a) =
∫ +∞
−∞

1

a
ψ1

(
t − b
a

)
f (t) dt and ψ1 =

(
tψ(t)

)′
.

In addition to the previous assumptions on φ and ψ , now assume that ψ is in L1(R)

and limt→±∞ |tφ(t)| = 0. Notice that

d

dt

(
tφ(t)

) = φ(t)+ tφ′(t).
Therefore, tφ(t) is absolutely continuous, and for every ρ > 0,

ρφ(ρ)+ ρφ(−ρ) =
∫ +ρ
−ρ

ψ(t) dt. (9)

But limt→±∞ |φ(t)| = 0 implies that limρ→±∞ |ρφ(ρ)+ ρφ(−ρ)| = 0. Thus,∫ +∞
−∞

ψ(t) dt = 0. (10)

This property is a necessary condition for mother wavelets (essentially it is the condition
that ψ has a vanishing “DC”-component).

We would like to conclude the discussion on theorem 1 with a comment on the
properties of the father and mother wavelets. The hypothesis that both wavelets are
absolutely integrable has not been used in the proof of theorem 1. We added this par-
ticular hypothesis because it is customary to define wavelet transforms so that they are
absolutely or square integrable functions.

Let us now see how Distributed Approximating Functionals produce pairs {φ,ψ}
satisfying the previous hypotheses. Let φ ∈ Cn(R). Define the differential operator G(m)

by the following:

G(0)= xI, (11)

G(n) = x ∂n

∂xn
+ n ∂n−1

∂xn−1
, (12)

where n = 1, 2, 3, . . . , m. Now set

ψn = G(n)φ, (13)
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Figure 1. Plot of function φa with a = 1.0.

where φ ∈ Cm and n = 0, 1, 2, . . . , m.
In the following, we present some examples to illustrate these ideas.

Example 1 (Mexican hat wavelets based on the Gaussian function as the father
wavelet). We take the following function:

φ(x) = 1√
2π

e−x
2/2 (14)

as our father wavelet (see figure 1), and for n = 1, equation (13) gives (see figure 2):

ψ1(x) = 1√
2π

(
1− x2

)
e−x

2/2. (15)

The function ψ1 is the well-known Mexican hat wavelet [14]. For n = 2 and n = 3, we
get (see figures 3 and 4, respectively)

ψ2(x) = 1√
2π

(
x3 − 3x

)
e−x

2/2, (16)

and

ψ3(x) = 1√
2π

(− x4 + 6x2 − 3
)
e−x

2/2. (17)

The result for n = 3 is an interesting “Mexican superhat wavelet”.
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Figure 2. Plot of function ψa,1 with a = 1.0.

Figure 3. Plot of function ψa,2 with a = 1.0.
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Figure 4. Plot of function ψa,3 with a = 1.0.

If one instead chooses the Sinc-DAF [8]

φ(x) = 1√
2π

e−x
2/2 sin(πx)

πx

(see figure 5) as the father wavelet, and sets n = 1, equation (13) gives (see figure 6)

ψ1 = 1√
2π

e−x
2/2

[
cos(πx)− sin(πx)

π
x

]
. (18)

For n = 2, we obtain (see figure 7)

ψ2 = 1√
2π

e−x
2/2[ sin(πx)

(
x2 − 1− π2)− cos(πx)2πx

]
. (19)

Theorem 1 establishes that our continuous wavelet transform can be utilized for
the calculation of the first derivative of another Continuous Wavelet Transform with
respect to the scale. Every function in L2(R) admits a representation with respect to the
CWT. This representation maps L2(R) isometrically onto L2(R2) with an appropriate
measure, where the first coordinate represents the time or the spatial domain and the
second the scale. In the CWT the frequency domain is divided into intervals of the form
[−2p−1,−2p) ∪ [2p, 2p+1) and we refer to p as the scale. More specifically, we do not
directly consider frequencies but we replace them with the scale.

Nevertheless, there is a reciprocity between the scale and the frequency; the high
frequency content is captured within higher scales and the low frequency within the
lower scales. The higher scale analysis thus includes more information about the finer
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Figure 5. Plot of function φa with a = 1.0.

Figure 6. Plot of function ψa,1 with a = 1.0.
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Figure 7. Plot of function ψa,2 with a = 1.0.

details of the signal, while lower scale analysis gives the average characteristics or a
“blurred” version of the signal. All these intuitive comments, which are well known in
the wavelet community simply reflect that differentiating the CWT of a function with
respect to scale gives us locally the rate of the change of the details of a signal.

In regions of rapid variation, partial derivatives of the CWT of a given signal with
respect to scale take on values whose moduli are significantly greater than zero, at least
for certain ranges of scale. Thus, such derivatives can assist us in identifying the re-
gions where the signal is rapidly changing. Edges are regions where the smoothness of
the luminosity function of an image changes much faster than in neighboring regions.
Therefore, theorem 1 and the preceding discussion suggest that the CWT with respect to
the mother wavelet ψ (as defined in theorem 1) provides us a tool to detect edges in an
image.

Below we present the results of some illustrative experiments in edge detection
using the DAF-based CWT. We consider two test functions (whose graphs are shown
in figures 8 and 13) that were selected because they represent typical models for edges.
Figures 11 and 16 respectively show the results of the CWT of these functions with
respect to the father wavelet φ given by equation (14). Notice that as the scale increases,
we obtain more and more accurate approximations to the original functions. For the
function shown in figure 8, it is very clear that discontinuities occur at t = 200 and
t = 300 in the time domain (see figure 11). The CWT of this function for coarser scales
smoothes these two discontinuities. If we consider carefully the behavior of the CWT in
figure 11 at t = 200 and t = 300 we see that over the scale interval a = 0.04 to 0.13
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Figure 8. Plot of the original signal: a step function with discontinuities at t = 200 and t = 300.

Figure 9. Graph of the Continuous Wavelet Transform of our step function with the father wavelet versus
the natural log of the scales, the upper part is the finer scale. This type of graph of the CWT is often refered

to as scalogram.
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Figure 10. Scalogram of the step function in figure 8 with respect to the mother wavelet.

Figure 11. Mesh of the Continuous Wavelet Transform depicted in figure 9.
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Figure 12. Mesh of the Continuous Wavelet Transform depicted in figure 10.

Figure 13. Plot of the original signal: a hat function with discontinuities at t = 200, t = 300 and t = 250.
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Figure 14. Scalogram of the hat function in figure 13 with respect to the father wavelet.

Figure 15. Scalogram of the hat function in figure 13 with respect to the mother wavelet.
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Figure 16. Mesh of the Continuous Wavelet Transform depicted in figure 14.

Figure 17. Mesh of the Continuous Wavelet Transform depicted in figure 15.
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there is no significant change in the value of the CWT of the function f (see figure 8),
but for scales from a equal to 0.13 up to 1.5, large changes are observed. Figure 10
shows the scalogram, i.e., the values of the CWT, of the function in figure 8 with respect
to the mother wavelet ψ (corresponding to the particular father wavelet φ, with respect
to which the CWT in figure 11 was calculated). Recall that the CWT of the function
with the mother wavelet ψ is the first-order partial derivative, which respect to the scale,
of the CWT of the function with the father wavelet. Carefully examining the values of
the scalogram in figure 10 at t = 200 and t = 300 we see that at high scales, there is
a rapid increase followed immediately by a rapid decrease, with values approximately
zero away from the discontinuities. At lower scale values, one finds a smoothing of the
discontinuity. It is clear that the rapidly changing values of the scalogram of figure 10,
concentrated at t = 200 and t = 300, for higher scales indicate an extreme sensitivity of
this method for the detection of edges.

In figure 13 the hat function is continuous but not C1. Notice that the scalogram in
figure 15 identifies the points t = 200, t = 300 and t = 250 as “edges”, where the first-
order partial derivative of the input signal does not exist. Experiments with different
examples of father and mother wavelets, e.g., those associated with Hermite and Sinc
DAFs, show similar behavior.

The present results are very encouraging. However, further experimentation with
2-D images is needed, along with additional in-depth analysis of the mathematics. This
is part of an ongoing project dealing with the development of the mathematical theory
of DAFs.

3. Distributed approximating functionals and unity approximations

In this section, we shall discuss some rigorous mathematical properties of DAFs,
especially in connection with two classes of DAFs.

Definition 1. A function f :R → R is said to be in the Schwartz class if it is C∞ and
satisfies the property: for every n = 0, 1, 2, . . . ,

sup
{|x|k∣∣f (n)(x)

∣∣: x ∈ R} < +∞, (20)

where f (n) is the nth derivative of f .

The set of all functions in the Schwartz class is denoted by S(R) and is a locally
convex topological vector space.

Recently, Chandler and Gibson studied some of the mathematical properties of
the DAFs [7]. Among other things they introduce an interesting general definition of
“unity approximations”, to which DAFs belong, and whose essentials we review be-
low.
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Definition 2 [7]. Let M be a non-negative integer, let SM be the set of measurable
functions f̂ :R→ C such that

∥∥f̂ ∥∥
M
:=
∫ +∞
−∞

∣∣f̂ (ξ )∣∣wM(ξ) dξ < +∞, (21)

where wM(ξ) :=∑M
m=0 |ξ |m.

It can be proved that SM is a Banach space with respect to ‖ · ‖M , i.e., ‖ · ‖M is a
norm and with respect to this norm, Cauchy sequences of functions in SM converge in
SM . For details, the reader should refer to [7].

Next, we will follow the formalism of [7] but slightly modified. Let F be the
Fourier transform in L1(R). For f ∈ L1(R) and ξ ∈ R we define

F(f )(ξ) = f̂ (ξ ) := 1√
2π

∫ +∞
−∞

f (x)e−ixξ dx. (22)

Plancherel’s theorem establishes that F defined on L1(R)∩L2(R) can be extended
to a unitary operator defined on the whole L2(R) (with values in L2(R)). For notational
convenience, we will assume thatF defined by equation (22) is always defined on L2(R),
but if f ∈ L1(R) ∩ L2(R), then we can and will properly use the above equation.

Lemma 1 [7]. The following are true:

(a) S(R) is contained in SM , for every M � 0;

(b) SM is a subspace of L1(R), and ‖ · ‖1 � ‖ · ‖M .

Statement (b) of the above lemma shows that it is legitimate to define the Fourier
transform for every f ∈ SM . So we define FM := F(SM)∩L1(R). By the general prop-
erties of the Fourier transform every element of FM is a uniformly continuous bounded
function. Since F(S(R)) ⊆ S(R), the statement (a) of lemma 1 shows that S(R) is
contained in FM . This implies the following corollary.

Corollary 1 [7]. FM ∩ LP (R) is dense in every Lp(R) for 1 � p <∞.

Recall that if f is bounded then ‖ · ‖∞ := sup{|f (x)|: x ∈ R}, and that ‖ · ‖∞
is a norm for the space of bounded functions defined on R. Assume that M � 1. The
definition of FM does not provide a criterion to determine easily whether a uniformly
continuous, absolutely integrable, bounded function defined on R belongs to FM or not.
Suppose that f is such a function and that we want to check whether f is in FM or not.
If f is in FM , then there exists g ∈ SM such that f = ĝ,

f̂ (ξ ) := 1√
2π

∫ +∞
−∞

f (x)e−ixξ dx = 1√
2π

∫ +∞
−∞

ĝ(x)e−ixξ dx. (23)
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By the invertibility properties of the Fourier transform we conclude that f̂ (ξ ) = g(−ξ)
almost everywhere1 ξ ∈ R, so f̂ (−ξ) = g(ξ). Therefore, if f ∈ FM ∩ L1(R) then
f̂ (−·) ∈ SM . Assuming that f ∈ L1(R) is uniformly continuous, and f̂ (−·) ∈ SM , then
for x ∈ R we have that

F
(
f̂ (−·))(x) = 1√

2π

∫ +∞
−∞

f̂ (ξ )eixξ dξ = f (x), (24)

since f is continuous at every x ∈ R and f̂ ∈ L1(R).
Thus, f ∈ FM . Therefore, we conclude the following convenient characterization

of the space FM , if M � 1.

Proposition 1. Let M � 1, f ∈ L1(R) be a bounded uniformly continuous function.
Then f ∈ FM if and only if f̂ (−·) ∈ SM .

For the case M = 0, we have that FM = A(R), the Banach space of the Fourier
transforms of the absolutely integrable functions.

Definition 3 [7]. A sequence {χn}n∈N of unity approximations is a sequence of uni-
formly continuous elements of F1, satisfying the following properties: there exists
C > 0 such that

(a) ‖χ̂n‖∞ � C for every n ∈ N;

(b) for almost every ξ ∈ R, limn→∞ χ̂n(ξ) = 1.

The sequences of unity approximations are generalizations of the delta sequences
introduced in the series of papers by Hoffman, Kouri and their collaborators [1–6,8–10].
Finally, the main result due to Chandler and Gibson [7] is the following:

Theorem 2 [7]. Let {χn}n∈N be a sequence of unity approximations. Let M � 0 and
f ∈ FM . The following are true:

(a) the operator Cn :FM → FM defined by Cnf := F(χ̂nf̂ ), where f ∈ FM , is a
well-defined, bounded operator;

(b) for every m = 0, 1, 2, . . . ,M and n ∈ N, f (m), (Cnf )
(m) belongs to FM ;

(c) limn→∞ ‖f (m) − (Cnf )
(m)‖∞ = 0 for every m = 0, 1, 2, . . . ,M.

The operators Cn are called Continuous DAF operators. Notice that by the defini-
tion of FM and the general properties of the Fourier transform, if f ∈ FM then f ∈ CM .

Also it is not hard to see (but we will omit the details of the proof here) that

(Cnf )(x) =
∫ +∞
−∞

χn(x − y)f (y) dy, (25)

where χn := F(χ̂n(−·)).
1 Such a − ξ is a Lebesgue point for g (see [15]).
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Remark 1. Theorem 2 shows that {χ̂n}n∈N can be considered as a sequence of low band-
pass filters. If we consider {χn}n∈N, then the latter sequences yield sequences of func-
tions that are similar to approximate identities in the time-domain, as equation (25) in-
dicates in particular. Moreover, theorem 2 shows that for FM which eventually contains
all “nice” functions, unity approximations give uniform approximations of all functions
in FM and of their derivatives up to order M. But the fact that {χn}n∈N and in par-
ticular DAF functions can be considered as band-pass filters indicates that DAFs can
be used as scaling functions for multiresolution analysis in L2(R) and more gener-
ally in L2(Rn). This particular property of DAF functions is currently under investi-
gation.

The latter equation establishes that {χn}n is a “delta sequence”.
We will now discuss several classes of DAF functions and prove explicitly that

they yield unity approximations {φn}∞n=1 of the type defined by Chandler and Gibson [7].
Therefore, for every such sequence {φn}∞n=1 of DAF functions, we must establish that the
following three properties are true.

1. Every φn ∈ L1(R) ∩ F1 belongs to S1, or equivalently,∫ +∞
−∞

(
1+ |ξ |)∣∣φ̂n(ξ)∣∣ dξ < +∞,

and it is uniformly continuous.

2. ‖φ̂n(ξ)‖∞ � C for every n ∈ N and ξ ∈ R for some positive constant C.

3. For almost every ξ ∈ R, limn→∞ φ̂n(ξ) = 1.

The uniform continuity of the classes of sequences of DAF functions which we study in
sections 3.1 and 3.2 is apparent from their definition.

3.1. Hermite DAFs

Hermite DAFs φN (N � 1) are given by the following formula:

φN,σ (x) := 1√
2πσ

e−x
2/(2σ 2)

N∑
n=0

(
1

4

)n 1

n!H2n

(
x√
2σ

)
, (26)

where the function H2n is the even-order Hermite polynomial. The Fourier transform of
the Hermite DAF is given by

φ̂N,σ (ξ) = e−ξ
2σ 2/2

N∑
n=0

(ξ 2σ 2)n

2nn! . (27)
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Then for M � 1 we have that∫ +∞
−∞

(
1+ |ξ | + |ξ |2 + · · · + |ξ |M)∣∣φ̂N,σ (ξ)∣∣ dξ

=
∫ +∞
−∞

(
1+ |ξ | + |ξ |2 + · · · + |ξ |M)e−ξ2σ 2/2

N∑
n=0

(ξ 2σ 2)n

2nn! dξ. (28)

The right-hand side of equation (28) is obviously finite, since the Gaussian belongs to
S(R). Thus, φ̂N ∈ SM for every M � 1 and N � 1.

Next, we have that (see figures 18 and 19)

∣∣φ̂N,σ (ξ)∣∣=
∣∣∣∣∣e−ξ2σ 2/2

N∑
n=0

(ξ 2σ 2)n

2nn!

∣∣∣∣∣
�
∣∣∣∣∣e−ξ2σ 2/2

∞∑
n=0

(ξ 2σ 2)n

2nn!

∣∣∣∣∣
= e−ξ

2σ 2/2eξ
2σ 2/2 = 1, (29)

and finally we have that (see figure 18)

lim
N→∞ φ̂N,σ (ξ)= lim

N→∞ e−ξ
2σ 2/2

N∑
n=0

(ξ 2σ 2)n

2nn!

= e−ξ
2σ 2/2 lim

N→∞

N∑
n=0

(ξ 2σ 2)n

2nn!

= e−ξ
2σ 2/2eξ

2σ 2/2 = 1. (30)

It is apparent from figures 18 and 19 that when N →+∞, or σ → 0, φ̂N,σ → 1.
Therefore (as also shown in the paper of Chandler and Gibson [7]), Hermite DAFs

do indeed yield unity approximations. Moreover, for every N � 1, and M � 1, every
φN belongs to FM . In addition, Hermite DAFs are C∞, because φ̂N ∈ SM for every
M ∈ Z+.

3.2. The Sinc-class of distributed approximating functionals

The following proposition shows that the Sinc-class of DAFs is not a small one.
Throughout the rest of the paper we shall denote the Gaussian with variance σ by gσ ,
i.e.,

gσ (x) := 1√
2πσ

e−x
2/(2σ 2). (31)
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Figure 18. The plot of the Hermite DAF φN,3.05 in frequency space with the variance σ fixed at 3.05.
Dash-dotted line, N = 10; dashed line, N = 30; and solid line, N = 70.

Figure 19. The plot of the Hermite DAF φ70,σ in frequency space with the highest order of the polynomial
N fixed at 70. Dash-dotted line, σ = 6.05; dashed line, σ = 4.05; and solid line, σ = 2.55.
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Proposition 2. Let f (x) be a function in L2(R) satisfying the following proper-
ties:

1. The Fourier transform of f (x) is absolutely bounded.

2.
∫ +∞
−∞ f̂ (ξ ) dξ = √2π .

3. The function f̂ is band limited, i.e., there exists A > 0 such that f̂ (ξ ) = 0 for
every |ξ | > A.

Then the sequence {φ̂n}∞n=1 defined by φ̂n := f̂ ∗ ĝσn , n ∈ N, is a unity approxima-
tion as σn→ 0.

Proof. The Fourier transform of the Gaussian function gσ is given by the equa-
tion

ĝσ (ξ) = 1√
2π

e−ξ
2σ 2/2. (32)

Thus, the Fourier transform of the DAF φn is given by the equation

φ̂n(ξ)=
(
f̂ ∗ ĝσn

)
(ξ)

=
∫ +∞
−∞

f̂ (ξ − ω)ĝσn(ω) dω. (33)

The third property of f implies that

φ̂n(ξ)=
∫ ξ+A

ξ−A
f̂ (ξ − ω)ĝσn(ω) dω

= 1√
2π

∫ ξ+A

ξ−A
f̂ (ξ − ω)e−ω2σ 2

n /2 dω. (34)

We will prove that φ̂n,σ belongs to SM for every M ∈ Z+:∫ +∞
−∞

(
1+ |ξ | + |ξ |2 + · · · + |ξ |M)∣∣φ̂n(ξ)∣∣ dξ

� 1√
2π

∫ +∞
−∞

(
1+ |ξ | + |ξ |2 + · · · + |ξ |M)

×
(∫ ξ+A

ξ−A

∣∣f̂ (ξ − ω)∣∣e−ω2σ 2
n /2 dω

)
dξ. (35)
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Now split the right-hand side of the previous inequality into the following three parts:∫ +∞
−∞

(
1+ |ξ | + |ξ |2 + · · · + |ξ |M)(∫ ξ+A

ξ−A

∣∣f̂ (ξ − ω)∣∣e−ω2σ 2
n /2 dω

)
dξ

=
∫ +A
−∞

(
1+ |ξ | + |ξ |2 + · · · + |ξ |M)(∫ ξ+A

ξ−A

∣∣f̂ (ξ − ω)∣∣e−ω2σ 2
n /2 dω

)
dξ

+
∫ +A
−A

(
1+ |ξ | + |ξ |2 + · · · + |ξ |M)(∫ ξ+A

ξ−A

∣∣f̂ (ξ − ω)∣∣e−ω2σ 2
n /2 dω

)
dξ

+
∫ +∞
+A

(
1+ |ξ | + |ξ |2 + · · · + |ξ |M)(∫ ξ+A

ξ−A

∣∣f̂ (ξ − ω)∣∣e−ω2σ 2
n /2dω

)
dξ. (36)

First, we will consider the first term in this sum.
Assume that ξ < −A and |ξ − ω| � A. Thus, ξ − A � ω � ξ + A < 0. This

implies that for every ω ∈ [−A,A] we have that

e−ω
2σ 2

n /2 � e−(ξ+A)
2σ 2

n /2. (37)

Therefore,∫ +A
−∞

(
1+ |ξ | + |ξ |2 + · · · + |ξ |M)(∫ ξ+A

ξ−A

∣∣f̂ (ξ − ω)∣∣e−ω2σ 2
n /2 dω

)
dξ

�
∫ +A
−∞

(
1+ |ξ | + |ξ |2 + · · · + |ξ |M)(∫ ξ+A

ξ−A

∣∣f̂ (ξ − ω)∣∣e−(ξ+A)2σ 2
n /2 dω

)
dξ

=
∫ +A
−∞

(
1+ |ξ | + |ξ |2 + · · · + |ξ |M)e−(ξ+A)2σ 2

n /2

(∫ ξ+A

ξ−A

∣∣f̂ (ξ − ω)∣∣ dω)dξ

<
∥∥f̂ ∥∥1

∫ +A
−∞

(
1+ |ξ | + |ξ |2 + · · · + |ξ |M)e−(ξ+A)2σ 2

n /2 dξ < +∞, (38)

for every finite integer M. Note that since f ∈ L2(R), we have that f̂ ∈ L2(R). Since f
is band limited, by applying Cauchy–Schwartz inequality we conclude that f̂ ∈ L1(R).

An argument similar to the one for the first summand in equation (36) applies
for the third summand as well. Obviously, the second term of the right-hand side of
equation (36) is finite.

This completes the proof that φ̂n ∈ SM , for every M � 1. This in turn implies that
φn is C∞.

From equation (34) it becomes apparent that for every ξ ∈ R also

∣∣φ̂n(ξ)∣∣ � 1√
2π

∥∥f̂n∥∥1. (39)

The latter inequality establishes that Sinc-class DAF sequence {φn} satisfies the
second property.
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Finally, we have that for every ξ ∈ R and n ∈ N, the functions ω →
f̂ (ω)e−(ξ−ω)2σ 2

n /2 are absolutely integrable and dominated by |f̂ |. Moreover,
limn→∞ f̂ (ω)e−(ξ−ω)

2σ 2
n 2 = f̂ (ω) for every ω ∈ R, because limn→∞ σn = 0. Thus,

by Lebesgue’s dominated convergence theorem we get that

lim
n→∞ φ̂n(ξ)=

1√
2π

∫ +∞
−∞

f̂ (ω) lim
σn→0

e−(ξ−ω)
2σ 2

n /2 dω

= 1√
2π

∫ +∞
−∞

f̂ (ω) dω = 1. (40)

This completes the proof of proposition 2. �

Remark 2. We can generalize the proposition by considering those f ∈ L2(R) satisfy-
ing properties 1 and 3 of proposition 2 only and

∫ +∞
−∞ f̂ (ξ ) dξ = C �= 0. Then we can

consider the unity approximation {φ̂n}n�1, where φn := (
√

2π/C)fgσn .

We shall consider a few examples of Sinc-class DAF sequences of functions that
form unity approximations.

Example 2 (2π -periodic Sinc-DAF). If we choose the f̂ as the following:

f̂ (ξ ) = χ[−π,π)(ξ) =
{

1 for |ξ | � π ,

0 for |ξ | > π,
(41)

then the Sinc-DAF is the following:

φσ (x) = 1√
2π

e−x
2/(2σ 2) sin(πx)

πx
. (42)

More generally, we have the 2a-periodic Sinc-DAF,

φσ (x) = 1√
2π

e−x
2/(2σ 2) sin(ax)

ax
. (43)

Example 3 (Generalized de la Vallée Poussin DAF). If we take f̂ to be given by the
following equation:

f̂η,λ(ξ) =




1 for |ξ | � η,
|ξ | − λη
η(1− λ) for η � |ξ | � λη,

0 otherwise,

(44)

where η � 0, λ > 1, then we construct the Generalized de la Vallée Poussin DAF based
on our preceding remark as

φσ (x) = 1√
2π3σ

e−x
3/(2σ 2) cos(ηx)− cos(ληx)

(λ− 1)ηx2
. (45)
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Remark 3. Notice that every function of the form fgσ , where f satisfies properties 1
and 3 of proposition 2, is C∞, because it belongs to the space FM for every positive
integer M.

Thus, we have obtained several interesting new DAFs in addition the previous
HDAF. Each of these can be used to provide a means of constructing wavelet mul-
tiresolution analyses. We expect they will be of interest for a variety of applications
in mathematical chemistry.
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